Молочнокислое брожение

Разложение винной кислоты — пропионовокислое брожение (турн)

Лишь ограниченное ч-исло молочнокислых бактерий вина способно разлагать винную кислоту. Это разложение представляет собой серьезную болезнь вина — турн, иногда довольно частое явление, но в настоящее время встречающееся все реже и реже вследствие прогресса в технике хранения вина. Механизм разложения винной кислоты исследовали Крампиц и Линен (1964) и особенно Радлер и Янисис (1972). Из анализа балансов, полученных на различных штаммах, Радлер и Янисис сделали вывод, что известны два пути разложения винной кислоты (рис. 15.30). Lactobacillus plantarum используют механизм I, который соответствует образованию из двух молекул винной кислоты трех молекул С02, одной молекулы уксусной кислоты и одной -молекулы молочной кислоты. Lactobacillus brevis использует механизм II, который соответствует образованию из трех молекул винной кислоты четырех молекул С02, двух молекул уксусной кислоты и одной молекулы янтарной кислоты. В этих двух механизмах обеспечивается равновесие окисления-восстановления в том смысле, что число молекул NAD, восстанавливаемых в NADH2, равно числу молекул NADH2, окисляемых в NAD.

Продукты окисления сахаров уксуснокислыми бактериямиОкисление спирта в уксусную кислоту за счет кислорода воздуха уксуснокислыми бактериями.

Некоторые бактерии могут реализовать частичное окисление уксусной кислоты в С02 и Н20, и соответствующая характеристика служит тестом для их классификации (Дивие и Дюпюи, 1969). Уравнение записывается: СН3 — СООН + -202 2С02 + 2Н20. В этом случае общее уравнение уксуснокислого брожения приобретает вид СН3 — СН2ОН + 302 2С02 + ЗН20. Точно так же уксуснокислые бактерии вызывают частичную этерификацию уксусной кислоты этиловым спиртом в соответствии с реакцией СН3 — СООН + сн3 — сн2он сн3 — со — о — сн2 — СНз + н2о, Этилацетат играет важную роль в энологии; он ответственен за особые органолептические качества вин, пораженных при уксусном скисании.

Окисление сахаров

Кетогенность уксуснокислых бактерий обычно используется как тест классификации. Она соответствует их способности окислять сахара с образованием веществ, обладающих функцией кетонов. Различие между сахарами и этими кетоновыми (веществами показано на рис. 15.32, который не предусматривает тесноовязанных механизмов и промежуточных реакций. О многих из этих веществ сообщали Вюрдиг и Шлоттер (1969), а также Салис а Пейно (1971). Кетоновые вещества присутствуют во всех винах, но их особенно много в винах, полученных из винограда, на котором гниль вызвала растрескивание ягод и развитие уксуснокислых бактерий. Кетоновые вещества также участвуют в связывании сернистого ангидрида.

* Заполнение бочки бродящим суслом под шпунт может привести к вспениванию сусла и вытеканию пены через шпунтовое отверстие, что приведет к потерям сусла и нарушению санитарного состояния бродильного отделения (прим. спец. ред.).

Биохимия процесса

Энзимные реакции

Первым этапом спиртового брожения является гликолиз, во время которой одна молекула D-глюкозы преобразуется в две молекулы пирувата. У хлебопекарных дрожжей (S. cerevisiae) во время этого образуются две молекулы аденозинтрифосфата (АТФ) из двух молекул аденозиндифосфата (АДФ) и двух фосфатов посредством субстратного фосфорилирования. У Zymomonas mobilis образуется только одна молекула АТФ. Помимо этого две молекулы NAD+ (Никотинамидадениндинуклеотид) восстанавливаются до NADH.

Для гликолиза требуется регенерация NAD+ , что происходит посредством нижеследующих процессов. От каждой молекулы пирувата отщепляется посредством энзима пируватдегидрогеназны молекула диоксида углерода. Кофакторами в этой реакции выступает тиаминпирофосфат и два иона магния. В процессе образуется ядовитый для живых организмов ацетальдегид.

CH3−CO−COOH⟶CH3−CHO+CO2{\displaystyle CH_{3}-CO-COOH\longrightarrow CH_{3}-CHO+CO_{2}}

Процесс восстановления ацетальдегида катализируется алкогольдегидрогеназой содержащей ион цинка, который поляризует карбоксильную группу ацетальдегида. Поэтому два электрона и один протон могут быть переданы от NADH ацетальдегиду , таким образом образуются алкоголь и NAD+. Данные реакции протекают в цитоплазме клетки.

CH3−CHO+NADH+H+⇄CH3−CH2OH+NAD+{\displaystyle CH_{3}-CHO+NADH+H^{+}\rightleftarrows CH_{3}-CH_{2}OH+NAD^{+}}

Таким образом, продуктами спиртового брожения являются этанол и CO2{\displaystyle CO_{2}}, а не молочная кислота, как в молочнокислом брожении.

В результате получается реакция:

C6H12O6⟶2C2H5OH+2CO2{\displaystyle C_{6}H_{12}O_{6}\longrightarrow 2C_{2}H_{5}OH+2CO_{2}}

Спиртовое брожение сопровождается запасанием энергии в виде АТФ. Суммарно реакцию можно записать так:

C6H12O6+H3PO4+2ADP⟶2C2H5OH+2CO2+2ATP{\displaystyle C_{6}H_{12}O_{6}+H_{3}PO_{4}+2ADP\longrightarrow 2C_{2}H_{5}OH+2CO_{2}+2ATP}

Алкогольдегидрогеназа катализирует также и обратную реакцию, расщепления алкоголя, которая происходит у человека в печени. Ацетальдегид токсичен и является, помимо потери влаги, главной причиной для головной боли и тошноты после чрезмерного потребления алкоголя.

При спиртовом брожении у дрожжей могут возникать побочные продукты как метанол, бутанол, амиловый спирт и гексанол. Они возникаю не посредством вышеописанного процесса, а к примеру в процессе разложения аминокислот. В организме метанол перерабатывается алкогольдегидрогеназой в токсичный формальдегид. При потреблении низкокачественного алкоголя (с содержанием метанола) в теле человека образуется большое количество формальдегида, который в свою очередь повреждает разнообразные белки, как например высокочувствительные сенсоры в глазах, что может привести к мышечным спазмам, слепоте и смерти.

Другие субстраты

Помимо глюкозы и другие моносахариды могут быть задействованы в спиртовом брожении. Большинство видов дрожжей предпочитают именно глюкозу, поэтому в процессе производства вина из винограда, в котором в равной мере содержится как фруктоза так и глюкоза, преимущественно глюкоза превращается в алкоголь. Если не весь сахар перерабатывается, то в готовом вине будут чувствоваться сладкие нотки. Большую часть сахара в этом случае будет составлять фруктоза.

D-фруктоза может быть фосфорилирована гексокиназой и встроена в цикл гликолиза. Альтернативный путём является преобразование фруктозы посредством фруктокиназы в фруктозо-1-фосфат, который далее расщепляется фруктозо-1-фосфатальдолазой на глицеральдегид и дигидроксиацетон-3-фосфат. Последний является промежуточным продуктом гликолиза и образуется в ходе реакции, катализируемой фруктозо-1,6-бисфосфосфатальдолазой. Глицеральдегид может включаться в гликолиз после его фосфорилирования с участием АТФ.

При наличии нужных энзимов дисахариды могут также быть переработаны в алкоголь. В присутствии инвертазы сахароза расщепляется на глюкозу и фруктозу, которые встраиваются в цикл гликолиза вышеописанным образом. А при наличии бета-галактозидаза лактоза может быть расщеплён на глюкозу и галактозу. Схожие процессы верны и для полисахарид.

Основы процесса молочнокислого брожения

С химической точки зрения эти превращения представляют собой ряд последовательных стадий.

  1. Сначала происходит изменение исходного субстрата, то есть изменяется углеродная цепь вещества (углевода). Это приводит к появлению промежуточных соединений совершенно иной природы, относящихся к разным классам. Например, если исходный субстрат — глюкоза, то она перестраивается в глюконовую кислоту.
  2. Окислительно-восстановительные реакции, сопровождающиеся выделением газов, образованием побочных продуктов. Основной единицей в ходе всего процесса является молочная кислота. Именно она вырабатывается и накапливается в ходе брожения. Однако это не единственное соединение. Так, происходит формирование молекул уксусной кислоты, этилового спирта, углекислого газа, воды, иногда и других сопровождающих.
  3. Энергетический выход процесса в виде молекул аденозинтрифосфорной кислоты (АТФ). На одну молекулу глюкозы приходится 2 молекулы АТФ, если же исходный субстрат более сложного строения, например целлюлоза, тогда три молекулы АТФ. Эту энергию используют молочнокислые бактерии для дальнейшей жизнедеятельности.

Естественно, что если разбираться в биохимических превращениях подробно, то следует указывать все промежуточные молекулы и комплексы. Такие, например, как:

Однако этот вопрос заслуживает отдельного внимания и рассматриваться должен с точки зрения биохимии, поэтому его затрагивать в данной статье не будем. Более подробно рассмотрим, какова технология производства молочнокислых продуктов и какие виды рассматриваемого брожения существуют.

Пищевые продукты, получаемые с использованием брожения (по регионам)

  • По всему миру: дрожжевой хлеб, спирт, вино, уксус, сыр, йогурт, пиво, сидр
  • Азия

    • Индия: achar, gundruk, индийские пикули, идли
    • Юго-Восточная Азия: asinan, bai-ming, belacan, burong mangga, dalok, jeruk, кимчхи, рыбный соус, leppet-so, miang, мисо, nata de coco, naw-mai-dong, pak-siam-dong, paw-tsaynob в снегу (雪裡蕻), саке, seokbakji, соевый соус, сычуаньская капуста (四川泡菜), tai-tan tsoi, такуан, tsa tzai, цукэмоно, yen tsai (醃菜), пахучий соевый творог, некоторые виды чая
    • Центральная Азия: кумыс (кобылье молоко), кефир, шубат (верблюжье молоко), айран
  • Африка: семена гибискуса, острый перцовый соус, lamoun makbouss, mauoloh, msir, mslalla, oilseed, огили, огири, гарри
  • Америка: сыр, маринованные овощи, квашеная капуста, семена люпина, семена масличных культур, шоколад, ваниль, табаско, квашеная рыба, рыбьи головы, морж, тюлений жир, птица (в эскимосской кухне)
  • Ближний Восток: мацони, kushuk, маринованные лимоны, айран, mekhalel, тан, торси, tursu
  • Европа: сыр, квашеная капуста, кисломолочные продукты, такие как творог, кефир и простокваша, айран, мацони, квашеная рыба, сюрстрёмминг
  • Россия: простокваша, сметана, квас, квашеная капуста, мочёные яблоки, мочёные сливы, мочёные груши, мочёные арбузы, мочёный виноград, бочковые солёные огурцы, солёные томаты, солёные грибы, брага
  • Регионы Арктической зоны: копальхен

История возникновения и использования брожения

Первые упоминания о том, что процесс брожения использовался людьми с целью получения определенной продукции, появились еще 5000 году до нашей эры. Именно тогда вавилоняне использовали этот способ для получения таких продуктов, как:

  • вино;
  • простокваша и другие молочные изделия.

Позже подобное продовольствие стали получать и в Египте, Китае, Судане, Мексике и прочих древних государствах. Стали выпекать дрожжевой хлеб, сбраживать овощные культуры, появились первые попытки консервирования.

Процесс молочнокислого брожения применялся людьми тысячелетиями

Сыры, кефиры, йогурты были важной частью трапезы во все времена. О пользе этих продуктов знали все лекари и врачеватели

Однако причины, по которым возможно превращение подобного рода, долгое время оставались неизвестными.

То, что условия брожения требуют присутствия микроорганизмов, люди даже предположить не могли. В середине XVII века Ван Гельмонт предложит ввести термин «брожение» для тех процессов приготовления пищи, которые сопровождаются выделением газа. Ведь в переводе данное слово означает «кипящий». Однако лишь в XIX веке, то есть почти двести лет спустя, французский микробиолог, химик и физик Луи Пастер открыл миру существование микробов, бактерий.

С тех пор стало известно о том, что разное брожение требует присутствия разного рода невидимых глазу микроорганизмов. Их изучение дало возможность со временем управлять брожением и направлять его в нужную человеку сторону.

Использование человеком[править | править код]

Молочнокислое брожение используется в приготовлении различных продуктов на основе молока (простокваши, сметаны, кефира. Для приготовления сметаны используются мезофильные бактерии и Streptococcus cremoris, йогуртов — термофильные и Lactobacillus delbrueckii subsp. bulgaricus, ацидофилина — Lactobacillus acidophilus, творога, мягких сыров и сливочного масла — Lactobacillus casei, которая вызывает сворачивание белка казеина. Для производства кефира используется симбиотический комплекс из лактобактерий, стрептококков и дрожжей («кефирный гриб»). Спонтанное образование простокваши вызывает , постоянно присутствующая в молоке. Кисломолочные продукты представляют собой накопительные культуры соответствующих бактерий.

Поскольку молочная кислота является естественным консервантом, молочнокислое брожение используется при квашении овощей, засолке огурцов, в заквасках для ржаных сортов хлеба и добавках для сырокопчёных колбас, а также для получения чистого лактата. С помощью молочнокислого брожения осуществляют силосование, в том числе заготовку кормовой свёклы.

Виды молочнокислого брожения

Различают т. н. гомоферментативное и гетероферментативное молочнокислое брожение, в зависимости от выделяющихся продуктов помимо молочной кислоты и их процентного соотношения. Отличие также заключается и в разных путях получения пирувата при деградации углеводов гомо- и гетероферментативными молочнокислыми бактериями.

Гомоферментативное молочнокислое брожение

При гомоферментативном молочнокислом брожении углевод сначала окисляется до пирувата по гликолитическому пути, затем пируват восстанавливается до молочной кислоты НАДН +Н (образовавшегося на стадии гликолиза при дегидрировании глицеральдегид-3-фосфата) при помощи лактатдегидрогеназы . От стереоспецифичности лактатдегидрогеназы и наличия лактатрацемазы зависит, какой энантиомер молочной кислоты будет превалировать в продуктах- L-, D- молочная кислота или же DL-рацемат . Продуктом гомоферментативного молочнокислого брожения является молочная кислота , которая составляет не менее 90 % всех продуктов брожения. Промежуточными продуктами являются: глюкозо-6-фосфат , фруктозо-6-фосфат , фруктозо-1,6-дифосфат , 3-фосфоглицериновый альдегид, 1,3-дифосфоглицериновая кислота , пировиноградная кислота . Примеры гомоферментативных молочнокислых бактерий: Lactobacillus casei
, L. acidophilus
, Streptococcus lactis
.

Гетероферментативное молочнокислое брожение

В отличие от гомоферментативного брожения, деградация глюкозы идет по пентозофосфатному пути, образующийся из ксилулозо-5-фосфата глицеральдегид-3-фосфат окисляется до молочной кислоты, а ацетилфосфат восстанавливается до этанола (некоторые гетероферментативные молочнокислые бактерии окисляют полученный этанол частично или полностью до ацетата). Таким образом, при гетероферментативном молочнокислом брожении образуется больше продуктов: молочная кислота,

Природа позволяет человеку пользоваться теми благами, что в ней имеются. При этом люди стараются эти богатства приумножать, создавать что-то новое и познавать еще неизвестное. Бактерии — это мельчайшие создания природы, которых также научился использовать в своих целях человек.

Но не только вред, сопряженный с патогенными процессами и болезнями, несут в себе эти прокариотические организмы

Они еще являются источником важного промышленного процесса, который издревле применяется людьми — брожения. В данной статье мы рассмотрим, что собой представляет этот процесс и как осуществляется конкретно молочнокислое сбраживание веществ

Биохимия

Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.

Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза

Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.. В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид)

В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высокоокисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до диоксида углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырёх молекул АТФ (ср. около 36 молекул путём аэробного дыхания).

2.1.1 Характеристика готового продукта

Сыр «Российский
новый» должен соответствовать
требованиям приведенным ниже.

Форму, размер и
массу сыр должен иметь следующие: форма
— низкий цилиндр со слегка выпуклой
боковой поверхностью и округлыми
гранями; высота -10-18см; диаметр 24-28см;
масса — 4,7-1,1 кг.

Органолептические
показатели сыра:

— вкус и запах —
выраженный сырный, слегка кисловатых,
без посторонних привкусов и запахов,
допускается слегка пряный вкус;

— внешний вид- корка
ровная, без повреждений и толстого
подкоркового слоя, покрытая специальными
парафинами, полимерными, комбинированными
составами или полимерными пленками под
вакуумом, поверхность должна быть
чистой;

— консистенция-
тесто пластичное, нежное, однородное
(допускается слегка плотное тесто);

— рисунок — на
разрезе сыр имеет равномерно расположенный
рисунок, состоящий из глазков неправильной,
угловатой или щелевидной формы;

— цвет теста — от
слабо-желтого до желтого, равномерный
по всей массе.

Физико-химические
показатели сыра: массовая доля жира в
сухом веществе 501,6%;
массовая доля влаги, не более 44%; массовая
доля поваренной соли 1,5
0,5%.

Гомоферментативное брожение

Гомоферментативное брожение молочнокислое подразумевает использование специальных форм возбудителей и отличается от гетероферментативного получаемыми продуктами и их количеством. Происходит оно по гликолитическому пути внутри клетки микроорганизма. Суть состоит, как и в целом у любого брожения, в превращении углеводов в молочную кислоту. Основное преимущество подобного процесса в том, что выход нужного продукта составляет 90%. И лишь оставшаяся часть уходит на побочные соединения.

Бактерии брожения такого типа следующих видов:

  • Streptococcus lactis.
  • Lactobacillus casei.
  • Lactobacillus acidophilus и другие.

Какие еще вещества образуются в результате гомоферментативного брожения? Это такие соединения, как:

  • этиловый спирт;
  • летучие кислоты;
  • углекислый газ;
  • фумаровая и янтарная кислота.

Однако в промышленности этот способ получения кисломолочной продукции практически не используется. Он сохранился в природе как первоначальный этап гликолиза, он же происходит в клетках мышц млекопитающих при обширных физических нагрузках.

Технология производства нужных продуктов для питания людей подразумевает использование таких исходных углеводов, как:

А гомоферментативные бактерии не способны окислять многие из этих соединений, поэтому их использование в качестве заквасок при производстве не представляется возможным.

Гомоферментативное молочнокислое брожение

Гомоферментативное молочнокислое брожение представляет собой энергетическую сторону образа жизни группы гомофермен-тативных молочнокислых бактерий. Черты древности этой группы видны не только в процессе добывания ее представителями энергии, но и в других сторонах их метаболизма, о чем будет сказано в разделе, посвященном краткой характеристике этих бактерий.

Гомоферментативное молочнокислое брожение, в основе которого лежит гликолитический путь разложения глюкозы, является единственным способом получения энергии для группы эубак-терий, которые при сбраживании углеводов превращают в молочную кислоту от 85 до 90 % сахара среды. Бактерии, входящие в данную группу, морфологически различны. Это кокки, относящиеся к родам Streptococcus и Pediococcus, а также длинные или короткие палочки из рода Lactobacillus. Последний подразделяется на три подрода.

Схема регенерации окисленного НАД в аэробных ( А и анаэробных условиях. В — молочнокислое брожение. С — спиртовое брожение.| Виды брожений, основанные на гликолизе.

Гомоферментативное молочнокислое брожение идентично по химизму реакциям гликолиза в анаэробных условиях.

Гомоферментативное молочнокислое брожение вызывают бактерии рода Lactobacillus и стрептококки. Они могут сбраживать различные сахара с 6 — ю ( гексозы) или 5 — ю ( пентозы) углеродными атомами, некоторые кислоты. Однако круг сбраживаемых ими продуктов ограничен.

В процессе гомоферментативного молочнокислого брожения синтезируются 2 молекулы АТФ на 1 молекулу сброженной глюкозы; в процессе дыхания при полном окислении молекулы глюкозы образуется 38 молекул АТФ. В обоих случаях эффективность запасания выделяющейся энергии в макроэргических связях АТФ приблизительно одинакова.

Возникнув как первый, далекий от совершенства энергетический процесс, гомоферментативное молочнокислое брожение не было потом отброшено в процессе эволюции. Наоборот, оно закрепилось и существует сейчас в виде гликолиза у подавляющего большинства прокариот, дрожжей, грибов, а также у высших животных и растений, но только как первый этап более совершенного энергетического процесса, сформировавшегося в результате последующего развития способов получения энергии живыми организмами. Чем объясняется такая судьба гомоферментативного молочнокислого брожения. Вероятно, оказалось выгодным использовать его в качестве первого подготовительного этапа по следующим причинам: 1) высокая энергетическая эффективность ( не путать с энергетическим выходом процесса.

Собственно гликолиз — это определенная последовательность ферментативных реакций от углевода до пировиноградной кислоты, поэтому, строго говоря, гликолиз не является синонимом гомоферментативного молочнокислого брожения, но 10 из 11 реакций у этих процессов идентичны.

Схема энергетических и транспортных процессов у молочнокислых бактерий. Темный кружок — переносчик. В — молекула растворенного вещества. глюкоза поступает в клетку с помощью фосфотрансфе-разной системы. Остальные объяснения в тексте.

Обратимо функционирующие протонные АТФазы мы находим у первичных анаэробов, получающих энергию в процессе брожения. Обнаружено, что выделение во внешнюю среду молочной и уксусной кислот молочнокислыми бактериями и клостридиями приводит к созданию на ЦПМ протонного градиента. У стрептококков, осуществляющих гомоферментативное молочнокислое брожение, молочная кислота накапливается в клетке в виде аниона, для которого ЦПМ практически непроницаема.

Возникнув как первый, далекий от совершенства энергетический процесс, гомоферментативное молочнокислое брожение не было потом отброшено в процессе эволюции. Наоборот, оно закрепилось и существует сейчас в виде гликолиза у подавляющего большинства прокариот, дрожжей, грибов, а также у высших животных и растений, но только как первый этап более совершенного энергетического процесса, сформировавшегося в результате последующего развития способов получения энергии живыми организмами. Чем объясняется такая судьба гомоферментативного молочнокислого брожения. Вероятно, оказалось выгодным использовать его в качестве первого подготовительного этапа по следующим причинам: 1) высокая энергетическая эффективность ( не путать с энергетическим выходом процесса.

Окислительно-восстановительные превращения имеют место на двух этапах процесса, именно они приводят к получению клеткой энергии. Это результат того, что процесс замкнут на себя, т.е. субстрат является и источником веществ — доноров электронов и источником веществ — их акцепторов. Все это, вместе взятое, определило судьбу гомоферментативного молочнокислого брожения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector