Классификация уксуснокислых бактерий

Основные типы брожения

  • Спиртовое брожение(осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и диоксид углерода. Из одной молекулы глюкозы в результате получается две молекулы спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении. Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя диоксид углерода обычно уходит в атмосферу, хотя в последнее время его стараются утилизировать.
  • Молочнокислое брожение, в ходе которого пируват восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогурт, простокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус.

Молочнокислое брожение может происходить также в мышцах животных, когда потребность в энергии выше, чем обеспечиваемая уже имеющимся АТФ и работой цикла Кребса. При достижении концентрации лактата больше 2 ммоль/л начинает работать интенсивнее цикл Кребса и возобновляет работу цикл Кори.

Обжигающие ощущения в мышцах во время тяжёлых физических упражнений соотносятся с недостаточной работой цикла Кори и повышением концентрации молочной кислоты выше 4ммоль/л, поскольку кислород преобразуется в диоксид углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; в то же время нужно помнить, что болезненность в мышцах после физических упражнений может быть вызвана не только высоким уровнем молочной кислоты, но и микротравмами мышечных волокон. Организм переходит к этому менее эффективному, но более скоростному методу производства АТФ в условиях повышенных нагрузок, когда цикл Кребса не успевает обеспечивать мышцы АТФ. Затем печень избавляется от излишнего лактата, преобразуя его по циклу Кори в глюкозу для возврата мышцам для повторного использования или преобразования в гликоген печени и наращивания собственных энергетических запасов.

Считается, что анаэробный гликолиз был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках — более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.

  • Уксуснокислое брожение осуществляют многие бактерии. Уксус (уксусная кислота) — прямой результат бактериальной ферментации. При мариновании продуктов уксусная кислота предохраняет пищу от болезнетворных и вызывающих гниение бактерий.
  • Маслянокислое брожение приводит к образованию масляной кислоты; его возбудителями являются некоторые анаэробные бактерии рода Клостридиум.
  • Щелочное (метановое) брожение — способ анаэробного дыхания определённых групп бактерий — используют для очистки сточных вод пищевой и целлюлозно-бумажной промышленности, для сбраживания избыточного активного ила.

1.2.5 Дрожжи

Дрожжи
– это высшие грибы, утратившие способность
образовывать мицелий и превратившиеся
в одноклеточные организмы

Относятся
к надцарству эукариот, отделу истинных
грибов, большинство дрожжей являются
представителями двух классов: аскомицетов
и дейтеромицетов. Кроме того, дрожжи
делятся на спорогенные и аспорогенные.
В молоке и молочных продуктах чаще всего
встречаются спорогенные дрожжи семейства
Saccharomycetaceae (например, родов Saccharomyces,
Zygosaccharomyces) и аспорогенные дрожжи семейства
Torulopsidaceae
(родов Torulopsis,
Candida,
Mycoderma
и др.).

В
основу классификации дрожжей положены
следующие признаки: различия в характере
их вегетативного размножения, способность
к спорообразованию и половому размножению,
а также другие морфологические и
физиологические свойства.

Многие
дрожжи являются возбудителями спиртового
брожения – процесса анаэробного
окисления сахаров до этилового спирта.

Возможность
дрожжей размножаться в молоке и молочных
продуктах определяется их способностью
сбраживать или окислять лактозу, а также
наличием в молоке микрофлоры, обладающей
(-галактозидазной активностью. В связи
с этим дрожжи, встречающиеся в молоке
и молочных продуктах, делятся на 3 группы:

1.
Дрожжи, не способные к спиртовому
брожению, но потребляющие лактозу путем
непосредственного окисления (в молоке
растут, но лактозу не сбраживают). К
таким дрожжам относятся дрожжи родов
Mycoderma, Torula.

2.
Дрожжи не сбраживающие лактозу, но
сбраживающие другие сахара. Эти дрожжи
могут развиваться только в совместной
культуре с микроорганизмами, которые
обладают (-галак-тозидазной активностью
и осуществляют гидролиз молочного
сахара до глюкозы и галактозы. Такими
дрожжами являются большинство видов
дрожжей рода Saccharomyces.

3.
Дрожжи, сбраживающие лактозу. Таких
дрожжей не много. Наиболее часто в
молочных продуктах встречаются следующие
виды дрожжей этой группы: Saccharomyces
lactis,
Saccharomyces
fragilis,
Torulopsis
kefir,
Torulopsis
sphaerica,
Candida
pseudotropicalis
и др.

Большинство
дрожжей являются факультативными
анаэробами, некоторые дрожжи – аэробы.
Хорошо растут в кислой среде (ацидофилы).
По отношению к температуре дрожжи
являются мезофилами, так как оптимальная
температура для их развития 25-300С. Более
высокая температура стимулирует развитие
дрожжей вида Torulopsis sphaerica и дрожжей, не
сбраживающих лактозу. В качестве
источника углерода лучше всего используют
гексозы, другие углеводы, спирты,
органические кислоты. Источниками азота
для них являются соли аммония, аминокислоты,
пептиды.

Естественным
местообитанием дрожжей является
поверхность плодов и ягод, сок и
поверхность листьев, нектар, вода, почва,
кожные покровы и пищеварительный тракт
людей и животных. Имеются патогенные и
условно-патогенные формы дрожжей,
которые вызывают кандидомикозы.

Роль
дрожжей в формировании качества молочных
продуктов исключительно велика. Они
используются при производстве кефира
и кумыса, являясь не только возбудителями
спиртового брожения, но и продуцентами
витаминов группы В, антибиотических
веществ, подавляющих развитие туберкулезной
палочки и других патогенных микроорганизмов.
Продукты жизнедеятельности дрожжей
активизируют развитие молочнокислых
бактерий. Некоторых дрожжи используются
в производстве масла, так как предотвращают
развитие на его поверхности микроскопических
грибов и, таким образом, повышают
стойкость масла в процессе хранения.

С
другой стороны, дрожжи являются
вредителями производства многих молочных
продуктов. Интенсивное развитие дрожжей
незаквасочного происхождения нередко
приводит к вспучиванию, изменению вкуса
творога, сметаны, сладких творожных
изделий, обильному газообразованию
сгущенного молока с сахаром (бомбаж
банок), возникновению спиртового вкуса
и запаха, а также к вспучиванию сыров9.

Среда обитания

Уксуснокислые бактерии, как показывает характеристика их питания, являются обитателями сред брожения. Чаще всего они размножаются сразу же за дрожжами, используя выделяемый ими спирт. Поэтому в природе их можно обнаружить на следующих продуктах:

  • сахаросодержащие спелые и перезрелые фрукты и овощи;
  • зрелый виноград, особенно загнившие гроздья, что отлично видно на фото, сделанных даже без помощи увеличения;
  • цветочный нектар и другие.

Особенно много их в скисших фруктовых соках, непастеризованном пиве, вине, спиртовой бражке, сидре и т.д. Как уксуснокислые, так и молочнокислые бактерии присутствуют в кефире и других кисломолочных продуктах, являются неотъемлемыми участниками процесса квашения и засолки овощей, мочения яблок.

Большое значение для их развития имеет температура. Практически для всех видов этого семейства бактерий нижним пределом является –6…–10°С. Верхняя граница составляет +35…+45°С. Температурные пределы непостоянны, так как они находятся во взаимосвязи с прочими характеристиками среды. Поэтому в природе бактерии отлично себя чувствуют на богатых питательными веществами продуктах, в которых происходит брожение, при постоянном доступе свободного кислорода.

Принято считать, что определяющее значение в распространении этих бактерий имеет плодовая мушка дрозофила, как можно увидеть на фото, и уксусные угрицы (вид круглых червей).

Молочнокислое брожение

Генетически связано со спиртовым Б

молочнокислое брожение, имеющее очень важное значение. В этом случае Пировиноградная к-та не декарбоксилируется, как при спиртовом Б., а непосредственно восстанавливается с участием специфической лактатдегидрогеназы за счет водорода НАД-Н.

Известны две группы молочнокислых бактерий. В первую из них входят гомоферментативные бактерии, которые образуют только молочную к-ту. Молочнокислые бактерии второй группы (гетероферментативные бактерии) образуют, кроме молочной, еще и уксусную к-ту, а также этиловый спирт (нередко в весьма значительных количествах), углекислый газ, муравьиную к-ту и некоторые другие продукты. Соотношение между этими продуктами зависит от многих условий (температура, pH среды и т. д.). Зачастую это обусловлено совместной деятельностью молочнокислых бактерий с дрожжами. Такого рода совместные «закваски» часто создаются искусственно и широко используются в хлебопечении — при приготовлении ржаного хлеба, в производстве хлебного кваса и ряда молочнокислых продуктов (сыр, кефир, простокваша, кумыс и пр.). Большое применение находит молочнокислое Б. в производстве молочной к-ты, используемой в ряде отраслей пищевой, текстильной и кожевенной промышленности.

Особенно эффективно молочнокислое Б. осуществляют термофильные микробы типа Thermobacterium cereale (ранее называвшиеся Lactobacillus delbrukii). Образуется молочная к-та и как один из продуктов превращений углеводов в мышечной ткани животных в процессе гликолиза.

Значение употребления молочнокислых продуктов

В свежем молоке, помимо углеводов и жиров, содержится лактоза, которую переносит не каждый организм, а в молочнокислых продуктах содержится молочная кислота. Она выполняет в организме такие функции:

  • активизирует выработку желудочного сока;
  • улучшает метаболизм;
  • усиливает сокращения кишечника.

В ходе сквашивания молочный белок казеин расщепляется на аминокислоты и пептиды, скорость усвоения которых выше в 2-3 раза. Лактобактерии производят лактозу, помогающую усваивать молочные углеводы. Молочнокислые продукты идеально подходят детям и пожилым людям, чья способность усваивать лактозу и молочный белок ниже, чем у взрослого человека. Жизнедеятельность бактерий в организме способствует выработке витаминов В1, В2, С и антибиотиков. Живые антибиотики, вырабатываемые организмом, не только подавляют жизнедеятельность болезнетворных микробов, но и убивают их. В процессе роста детям необходим кальций и белок, которые в кисломолочных продуктах находятся в идеальной пропорции. Главная полезная особенность кисломолочных продуктов ─ это регулировка микрофлоры кишечника. В организме человека живых бактерий до 100 триллионов, но не все они полезные. Есть бактерии, чья жизнедеятельность помогает человеку переварить пищу, они разрушают токсины, способствуют выработке витаминов. Это полезные. А есть вредные, вызывающие инфекции и выделяющие токсины. Если баланс этих бактерий в норме, то пищеварительная система работает как часы, в противном случае наблюдается дисбактериоз и снижается иммунитет.

11.7 Гнилостные процессы. Понятие об аэробном и анаэробном гниении. Возбудители. Роль гнилостных процессов в природе, в пищевой промышленности

Гниение
процесс
глубокого разложения белковых веществ.
Одним из конечных продуктов разложения
белковых веществ является аммиак,
поэтому процесс гниения называют
аммонификацией.

Белки –
высокомолекулярные соединения, поэтому
вначале они подвергаются внеклеточному
расщеплению протеолитическими ферментами
микроорганизмов, которые являются
экзоферментами.

Расщепление белков
происходит ступенчато:

белки → пептоны →
полипептиды → аминокислоты.

Образовавшиеся
аминокислоты диффундируют внутрь клеток
и могут быть использованы как в
конструктивном, так и в энергетическом
обмене.

Расщепление
аминокислот начинается путем их
дезаминирования
и декарбоксилирования.
При дезаминировании аминокислот
происходит отщепление аминогруппы с
образованием аммиака, органических
кислот (масляной, уксусной, пропионовой,
окси- и кетокислот) и высокомолекулярных
спиртов.

В дальнейшем
образование конечных продуктов зависит
от условий протекания процесса и от
вида микроорганизма – возбудителя
гниения.

Аэробное
гниение.

Протекает в присутствии кислорода
воздуха. Конечными продуктами аэробного
гниения являются, кроме аммиака, диоксид
углерода, сероводород и меркаптаны
(обладающие запахом тухлых яиц).
Сероводород и меркаптаны образуются
при разложении серосодержащих аминокислот
(цистина, цистеина, метионина).

Анаэробное
гниение.

Протекает в анаэробных условиях.
Конечными продуктами анаэробного
гниения являются продукты декарбоксилирования
аминокислот (отнятие карбоксильной
группы) с образованием дурно пахнущих
веществ: индола, акатола, фенола, крезола,
диаминов (их производные являются
трупными ядами и могут вызывать
отравления).

Возбудители
гнилостных процессов

Возбудителями
аэробного гниения

являются спорообразующие бактерии рода
Bacillus: Bacillus mycoides (грушевидная бацилла);
Bacillus megaterium (капустная бацилла); Bacillus
mesentericus (картофельная палочка); Bacillus
subtilis (сенная палочка), а также
неспорообразующие палочки: Serrate marcencens
(чудесная палочка); Proteus vulgaris (палочка
протея); Escherichia coli (кишечная палочка) и
другие микроорганизмы.

Возбудителями
анаэробного гниения

являются анаэробные споровые папочки
рода Clostridium (протеолитические клостридии):
Clostridium sporogenes, Clostridium subterminalis, Clostridium
perfringens, Clostridium botulinum.

Практическое
значение гнилостных процессов

Гнилостные
микроорганизмы нередко наносят большой
ущерб народному хозяйству, вызывая
порчу богатых белками продуктов питания:
мяса и мясопродуктов, яиц, молока, рыбы
и рыбопродуктов и др.

В природе (в воде,
почве) гнилостные бактерии активно
разлагают отмершие животные и растительные
ткани, минерализуют белковые вещества
и тем самым играют важную роль в
круговороте углерода и азота.

Значение уксуснокислых бактерий

Многим виноделам известна ситуация, когда из-за попадания в сосуд воздуха на поверхности напитка образовывалась пленка.

Данный процесс полностью портит вкус и свойства вина, делая его непригодным для употребления, а спровоцирован он бактериями уксуснокислого брожения.

Сами по себе такие микроорганизмы не представляют опасности и всегда находятся в вине и пиве, вред они начинают наносить только при контакте с воздухом.

Но сегодня и это, казалось бы, не очень хорошее свойство используют на благо человечества в определенных отраслях промышленности.

Способности микроорганизмов

Уксуснокислые бактерии в реальности задействованы в процессах не только скисания вин. Они способны окислять такие спирты, как этиловый, пропиловый и бутиловый, образовывая из них уксусную, пропионовую и масляную кислоты соответственно.

То есть любой напиток с содержанием такого спирта может быть испорчен благодаря жизнедеятельности бактерий.

Не стоит опасаться только за жидкости, содержащие метиловый и высшие спирты, поскольку они при окислении образуют ядовитый для микроорганизмов продукт.

Особенности процесса

Само окисление спиртов под воздействием уксуснокислых бактерий представляет собой дегидрирование. Весь процесс можно выразить в химической формуле, где изначально берется этиловый спирт, превращаемый под воздействием кислорода в уксусную кислоту, воду и выделяемую энергию:

СН3СН2ОН + О2 = СН3СООН + Н2О + энергия

Если спирта в среде находится слишком много, то результатом процесса будет образование только кислоты и минимальный выброс энергии, чего недостаточно для дальнейшей жизнедеятельности бактерий. Именно поэтому им приходиться окислять как можно большее количество спирта, что сближает окисление с другими анаэробными процессами, но оставляет его индивидуальным по определенным характеристикам.

Отличительной чертой воздействия уксуснокислых бактерий всегда остается образование на поверхности субстрата пленки.

Работа уксуснокислых бактерий и их свойства зависят от разновидности микроорганизмов и могут менять цвет, толщину, крепость и другие характеристики. На сегодняшний день открыто уже огромное количество видов этих типичных аэробов.

В жизни уксуснокислые бактерии встречаются в воздухе, почве, любом продукте брожения, на поверхности ягод и плодов, воды и так далее.

Биохимия

Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества.

Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза

Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.. В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид)

В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высокоокисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до диоксида углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырёх молекул АТФ (ср. около 36 молекул путём аэробного дыхания).

Попытки классификации

Перечислить все попытки систематики бактерий сложно. С помощью различных таблиц, схем градация бактерий проводится по особенностям их физиологии, физическим свойствам, способности к фотосинтезу, патогенности и пользе относительно жизнедеятельности людей.

Кислотоустойчивые организмы

Одно из первых мест любой классификационной таблицы сегодня занимает систематика с выявлением кислотоустойчивых бактерий. Это способность их окрашиваться по Грамму, не меняя полученную окраску при обработке этанолом. Эта биологическая способность позволяет проводить систематику по строению клеточной стенки. Так, бактерии, структура оболочки которых содержит много липидов, остаются кислотоустойчивыми к воздействию этанола. Кислотоустойчивые бактерии называют еще грамположительными. Выявление и умение дифференцировать болезнетворных бактерии по их кислотоустойчивости имело большое значение для дифференциальной диагностики возбудителей заболеваний, в том числе, туберкулеза.

При знакомстве ближе, микобактерии туберкулеза представляют собой палочковидные бактерии прямой или изогнутой формы. Выявление большого количества воска и липидов в составе оболочки объясняет их кислотоустойчивость. Характерен для диагностики туберкулеза медленный рост бактерий на специальных питательных средах и образование пигментов.

Выявление палочковидных микобактерий туберкулеза проводится главным образом из мокроты, но возможно и из других биологических выделений пораженных туберкулезом органов.

С туберкулезом обычно каждый встречается за всю жизнь не раз. Но только те, кто имеет низкий иммунитет и слабую резистентность, заболевают туберкулезом.

Уксуснокислые бактерии

Существует биологический вид бактерий, которые являются уксуснокислыми. Они окисляют спирт до уксусной кислоты при участии кислорода. Луи Пастером было доказано, что в стерильных условиях уксус из вина не образуется. Именно жизнедеятельность уксуснокислых бактерий имеет при этом самое прямое значение. Они представляют собой цепочку клеток цилиндрического вида.

Уксуснокислые бактерии

При исследовании проб, взятых с забраживающего сусла для вин, около трети микроорганизмов составили уксуснокислые. Даже на еще висящих гроздьях винограда уже есть уксуснокислые бактерии. Чтобы от них избавиться, нужно ограничить доступ воздуха к вину. При отсутствии кислорода в наполненных до предела бочках, уксуснокислые бактерии не имеют возможности образовывать пленку и не могут размножаться.

Пищевые продукты, получаемые с использованием брожения (по регионам)

  • По всему миру: дрожжевой хлеб, спирт, вино, уксус, сыр, йогурт, пиво, сидр
  • Азия

    • Индия: achar, gundruk, индийские пикули, идли
    • Юго-Восточная Азия: asinan, bai-ming, belacan, burong mangga, dalok, jeruk, кимчхи, рыбный соус, leppet-so, miang, мисо, nata de coco, naw-mai-dong, pak-siam-dong, paw-tsaynob в снегу (雪裡蕻), саке, seokbakji, соевый соус, сычуаньская капуста (四川泡菜), tai-tan tsoi, такуан, tsa tzai, цукэмоно, yen tsai (醃菜), пахучий соевый творог, некоторые виды чая
    • Центральная Азия: кумыс (кобылье молоко), кефир, шубат (верблюжье молоко), айран
  • Африка: семена гибискуса, острый перцовый соус, lamoun makbouss, mauoloh, msir, mslalla, oilseed, огили, огири, гарри
  • Америка: сыр, маринованные овощи, квашеная капуста, семена люпина, семена масличных культур, шоколад, ваниль, табаско, квашеная рыба, рыбьи головы, морж, тюлений жир, птица (в эскимосской кухне)
  • Ближний Восток: мацони, kushuk, маринованные лимоны, айран, mekhalel, тан, торси, tursu
  • Европа: сыр, квашеная капуста, кисломолочные продукты, такие как творог, кефир и простокваша, айран, мацони, квашеная рыба, сюрстрёмминг
  • Россия: простокваша, сметана, квас, квашеная капуста, мочёные яблоки, мочёные сливы, мочёные груши, мочёные арбузы, мочёный виноград, бочковые солёные огурцы, солёные томаты, солёные грибы, брага
  • Регионы Арктической зоны: копальхен

11.6 Окисление жиров и высших жирных кислот микроорганизмами. Микроорганизмы — возбудители порчи жиров

Жиры представляют
собой сложные эфиры глицерина и высших
жирных кислот.

Так
как жиры – высокомолекулярные соединения,
то в неизменном виде внутрь клетки они
попасть не могут. Поэтому вначале
происходит гидролиз жира при участии
фермента липазы, которая имеется у
многих микроорганизмов. В результате
образуются глицерин и высшие жирные
кислоты. Этот процесс не обеспечивает
клетки энергией, поэтому образовавшиеся
продукты гидролиза используются
различными микроорганизмами в качестве
энергетического материала. Процесс
протекает только в аэробных условиях.

Глицерин подвергается
окислению уксуснокислыми бактериями
до диоксиацетона и далее микроскопическими
грибами до углекислого газа и воды.

Высшие
жирные кислоты окисляются труднее и
медленнее. В процессе окисления образуются
промежуточные продукты: кетоны, альдегиды,
оксикислоты и др., которые придают
окисленному жиру прогорклый вкус.

Возбудители.
Наиболее активными микроорганизмами
в процессе разложения жира являются
бактерии рода Pseudomonas, особенно
флуорисцирующие (продуцирующие пигменты)
и мицелиальные грибы: Oidium lactis, многие
виды Aspergillus, Penicillium.

Практическое
значение процесса

Процесс
разложения жиров отмерших животных и
растенийпроисходитпостоянно
и имеетбольшое
значение вкруговороте
веществ в природе.

С
другой стороны, в пищевой промышленности
микроорганизмы, окисляющие жиры, приносят
вред, вызывая порчу пищевых жиров и
жира, содержащихся в различных пищевых
продуктах.

Следует
учитывать, что многие жирорасщепляющие
микроорганизмы являются психрофилами,
поэтому способны развиваться при
хранении пищевых продуктов в охлажденном
состоянии.

Уксуснокислые бактерии

Являются вредной микрофлорой, вызывающей уксусное скисание вина. Уксуснокислые бактерии принадлежат к роду Acetobacter. Они имеют палочковидную форму. Клетки короткие, толстые, заключены в капсулу, располагаются в жидкой среде попарно, редко оди­ночно, иногда в виде цепочек.

Некоторые уксуснокис­лые бактерии подвижны. Характеризуются высокой скоростью размножения: при благоприятных условиях из одной клетки за 12 часов может образоваться 17 млн. бактерий.

Свое название уксуснокислые бактерии получили из-за спо­собности окислять этиловый спирт в уксусную кислоту при свободном доступе кислорода воздуха.

Уксуснокислые бактерии легко и быстро размножаются на поврежденных ягодах винограда; попав в сусло, при брожении его они не погибают. Для своего роста и развития они нужда­ются в питательных веществах: углероде, азоте (в основном усваивают его из аминокислот), витаминах. Все уксуснокислые бактерии хорошо используют в качестве источника углерода моносахариды, многоатомные спирты, могут усваивать кислоты, в том числе вырабатываемую ими уксусную кислоту.

Такое явление называется переокислением. Энергию уксуснокислые бактерии получают за счет реакций окисления. Окисление бак­териями этилового спирта в уксусную кислоту сопровождается образованием этилацетата, который придает винам неприятные тона во вкусе и аромате, характерные для уксуснокислого скисания. Из 1 % об. этанола образуется 1 г уксусной кислоты.

Помимо этилового спирта, уксуснокислые бактерии окисля­ют другие одноатомные спирты, а именно: пропиловый спирт — в пропионовую кислоту, бутиловый — в масляную, изоамиловый — в изовалериановую кислоту, а также многоатомные спир­ты— сорбит, глицерин, маннит.

При развитии уксуснокислых бактерий на поверхности вина, виноградного сока, других жидких продуктов переработки вино­града образуются слизистая пленка или пристенное кольцо. Через некоторое время возможно погружение пленки в жид­кость. Характерной особенностью пленки из уксуснокислых бактерий является ее способность всползать на стенки стеклян­ной посуды. Чаще всего бактерии образуют пленку совместно с пленчатыми дрожжами родов Candida, Pichia, Hansenula.

На развитие уксуснокислых бактерий большое влияние ока­зывает температура. Для них благоприятен широкий диапазон: от 10 до 35 °С. Бактерии сохраняются при более низких тем­пературах, но погибают при более высоких в зависимости от величины рН, концентрации сернистой кислоты и других фак­торов. Так, в столовом вине при отсутствии кислорода клетки вида Acetobacter aceti погибают в течение 10 минут при температуре 50 °С.

С повышением крепости столовых вин активность уксусно­кислых бактерий снижается, однако при температуре 20—25°С бактерии способны развиваться и подвергать скисанию вина крепостью 14—16% об.

Уксуснокислые бактерии чувствительны к SO2: при содер­жании его в количестве 125—150 мг/л жизнедеятельность бак­терий приостанавливается при температуре 15—18 °С только на 10 дней; при введении в виноматериал S02 в количестве 50 мг/л в анаэробных условиях они теряют свою жизнедеятель­ность при температуре 10°С и ниже на 5—10-е сут, а при 28— 35 °С — на несколько часов. Для инактивации всех видов уксус­нокислых бактерий необходимо сульфитировать вина до содер­жания в них общего количества S02 не менее 175 мг/л.

Уксуснокислые бактерии развиваются в вине, соках, слабо­алкогольных напитках, в не полностью долитых или недоста­точно плотно закрытых емкостях, при пористой клепке бочек, при брожении мезги, в таре с остатками вина. Вино, в котором брожение закончилось, надо хранить без доступа воздуха.

При хранении вин в металлических и железобетонных емкостях, заполненных ниже установленных норм (недолитых), рекомендуется использовать герметизирующий состав СВС с 2% метабисульфита калия. Производство виноградных соков и напитков на их основе базируется на использовании пасте­ризации — кратковременного нагрева продукта в бескислород­ных условиях при температуре 55—75 °С и выше. В целях про­филактики рекомендуется периодически производить дезинфек­цию помещений, тары и коммуникаций.

Маслянокислое брожение

Маслянокислое брожение осуществляется в большинстве случаев облигатными анаэробами, т. е. организмами, способными существовать только в бескислородной среде.

В ходе маслянокислого Б. образуются не только масляная к-та, но в некоторых случаях и весьма значительные количества этилового спирта, молочной н уксусной кислот, а также газообразного водорода и углекислого газа. С помощью маслянокислого Б. осуществляется разложение органических веществ в условиях недостатка или полного отсутствия кислорода (болота, заболоченные места). Большое промышленное значение имеет маслянокислое Б. пектиновых веществ, происходящее при замочке стеблей льна, конопли и получении волокон. Вместе с тем деятельность бактерий, осуществляющих этот вид Б., необходимо предотвращать при приготовлении различного рода пищевых продуктов во избежание ухудшения вкуса и порчи последних (напр., прогоркание сливочного масла, силоса и т. п.).

Спиртовое, молочно- и маслянокислое Б.— основные типы Б.; остальные многочисленные виды Б. представляют собой либо различные их сочетания, либо осуществляются на базе тех или иных продуктов, возникающих в ходе основного вида Б. Так, в результате уксуснокислого брожения происходит окисление этилового спирта при участии кислорода воздуха. Этот вид Б. осуществляется специфическими уксуснокислыми бактериями. Суммарное уравнение уксуснокислого Б.:

CH3CH2OH + O2 = CH3COOH + H2O.

По исчерпании запасов спирта бактерии окисляют образованную им уксусную к-ту до углекислого газа и воды.

К Б., осуществляющемуся с участием О2, относится глюконовокислое брожение — образование глюконовой к-ты из глюкозы:

C6H12O6 + H2O + O2 → CH2OH(CHOH)4COOH + H2O2.

Оно вызываемся нек-рыми бактериями и плесневыми грибами. Глюконовая к-та — ценное соединение, широко применяемое в медицине и фарм, промышленности (см. Глюконовая кислота).

Лимоннокислоe брожениe осуществляется нек-рыми представителями плесневых грибков; особенно эффективны отдельные штаммы Aspergillus niger. Исходным продуктом служит Пировиноградная к-та, превращение к-рой идет одновременно в двух направлениях. Часть ее окисляется в уксусную, тогда как другая, присоединяя углекислоту, образует щавелевоуксусную к-ту. При конденсации уксусной и щавелевоуксусной кислот образуется лимонная к-та. Помимо лимонной к-ты, при лимоннокислом Б. образуются бутиловый спирт, ацетон, а также этиловый спирт, углекислый газ и водород.

Бутанолово-ацетоновое брожение осуществляют анаэробные бактерии Clostridium acetobutylicum. Главные продукты, образующиеся в ходе этого вида Б.,— н-бутиловый спирт, ацетон, этиловый спирт, углекислота, водород. Ацетоуксусная к-та (CH3COCH2COOH) и образующийся при ее декарбоксилировании ацетон (CH3COCH3), а также β-оксимасляная к-та составляют группу так наз. ацетоновых тел (см. Кетоновые тела), которые накапливаются в крови и моче животных при различных патологических состояниях и заболеваниях (диабет, голодание). В нормальных же условиях эти соединения окисляются с образованием безвредных для организма углекислоты и воды.

Высокая экономическая эффективность, чистота получаемых при Б. ценных продуктов лежат в основе все более широкого использования Б. в самых различных отраслях народного хозяйства.

Библиография: Кретович В.Л. Основы биохимии растений, М., 1971; Малер Г. иКордес Ю. Основы биологической химии, пер. с англ., М., 1970; Рубин Б. А. Курс физиологии растений, М., 1971;Рэкер Э. Биоэнергетические механизмы, пер. с англ., М., 1967. библиогр.; Шапошников В. Н. Техническая микробиология, М., 1948; H a s s i d W. Z. Transformation of sugars in plants, Ann. Rev. plant Physiol., v. 18, p. 253, 1967, bibliogr.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector